
2nd Knowledge Sharing Workshop

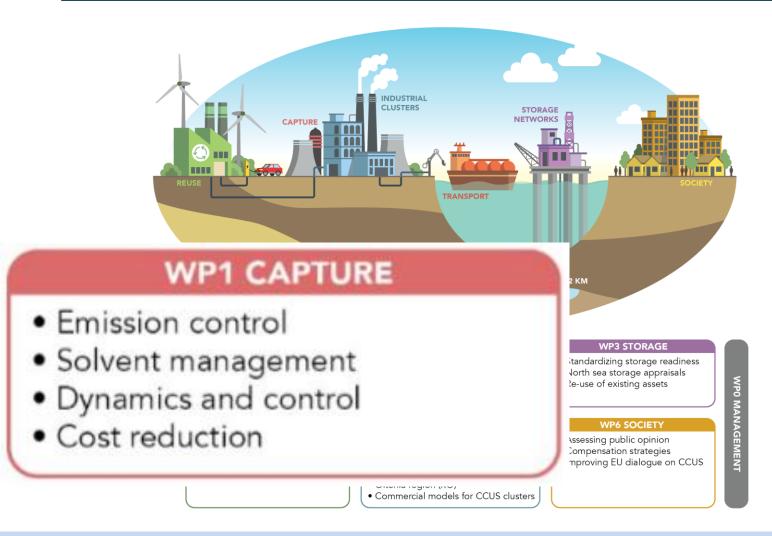
Coordinator

Full chain integrated project

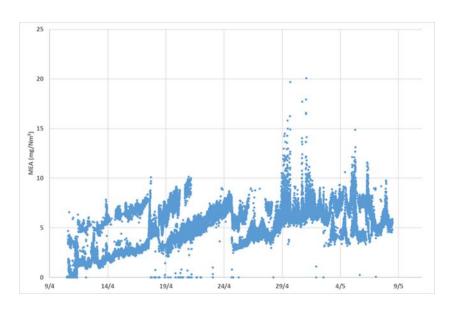
Objectives (1)

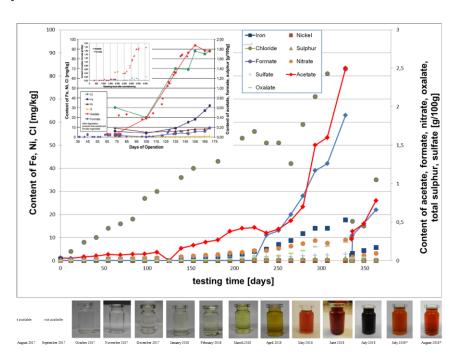
- ALIGN addresses specific issues across the CCUS chain for industrial regions in ERA-NET ACT countries, enabling large scale, cost effective implementation of CCUS by 2025. To reach the overall aim of ALIGN, the project encompasses a number of focused but interlinked objectives:
 - Capture: Enable near-term deployment of CO₂ capture by improving performance and reducing costs
 - Transport: Optimising large-scale CO₂ transport
 - Storage: Reduce uncertainty in the provision of large-scale storage networks
 - Utilisation: Establish the contribution of CCUS as an element for large-scale energy storage and conversion
 - Social acceptance: Implementing CCUS in society

Objectives (2)


 ALIGN will combine the results from each of these objectives to deliver actionable blueprints in ERA-NET ACT countries: Teesside and Grangemouth (UK), Rotterdam (NL), North Rhine-Westphalia (DE), Grenland (NO) and Oltenia (RO, in which CCUS enables low-emission industries, through geological storage or through utilization of CO₂.

Work Packages (WP1)



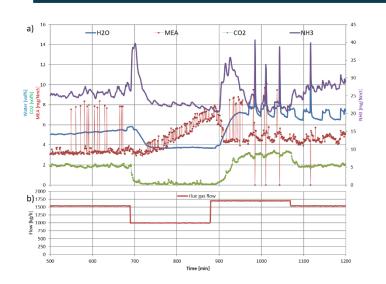

WP1 Capture (sinter, ntnu, tno, hwu, rwe, uos, tcm, usn)

Testing at RWE in Niederaussem by HWU, TNO and RWE

Very low emissions of MEA:

Particle measurements by HT ELPI+ confirmed that also aerosol-based emissions are irrelevant for the flue gas of a lignite-fired power plant with state of the art emission reduction technologies.

Results up to now:


Confirmation of the non-linear degradation behavior of MEA \rightarrow it happens everywhere......

Different degradation behavior compared with other pilot plants.

WP1 Capture (sinter, ntnu, tno, hwu, rwe, uos, tcm, usn)

Dynamic Testing:

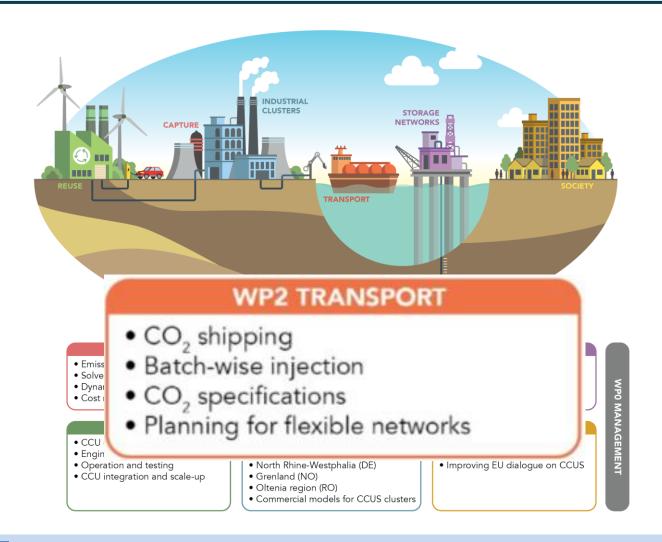
Investigation of dynamic behavior of the solvent loss due to emissions in dedicated test campaigns by varying:

- Loading and temperature of lean stream
- Water wash parameters
- L/G ratios
- Absorber temperature profile (dry bed, intercooler)

A solvent degradation network model has been established to estimate the rate of solvent degradation as a function of:

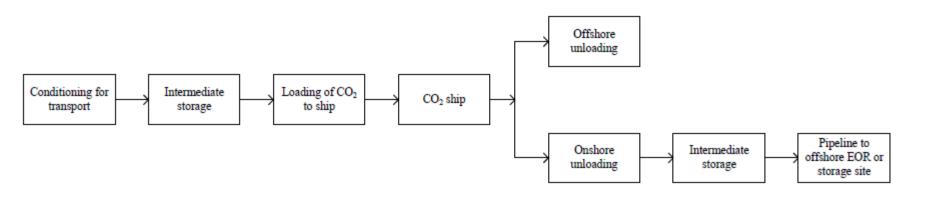
- the flue gas composition
- capture plant design and
- operating conditions

WP1 Future work


- Long term campaign at Niederaussem with CESAR-1.
- Test campaigns at TCM, Tiller and PACT.
- Emission measurements at other locations.
- Comparison and understanding of the results of the various test campaigns.

WP	Key expected results	Impacts
	Complete characterisation of aerosol-based emission	•
	and demonstration of countermeasures at TRL 6/7	proposed countermeasures for aerosols
E .		at industrial scale
Capture	Ensuring solvent consumption below 0.3kg amine/ton	Significant OPEX reduction compared
_	capture at TRL 6	with published solvent consumption and
WP1.		reduction of waste streams
≥	Guidelines for reliable and cost-efficient operation at	Improved CO₂ capture plant design for
	varying feed conditions and CO ₂ product requirements	flexible operation and niche
		applications.

Work Packages (WP2)



WP2 Removing technical barriers to large-scale CO₂ transport.

(SINTEF, ICL, TNO, IFE, TAQA)

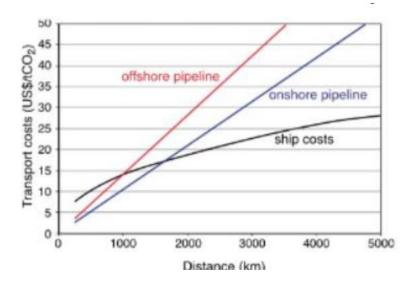


Table 1. CO₂ stream purity recommendations from literature for CO₂ storage.

Component*	CO ₂ storage (NETL ,2012)	CO ₂ storage (Dynamis)
CO ₂	95 vol% (min)	95.5 vol% (min)
H ₂ O	300 ppm _{wt}	500 ppm _v
O ₂	4 vol%	4 vol%
N ₂	4 vol%	_
Ar	4 vol%	< 4 vol%
H ₂	4 vol%	
CH ₄	4 vol%	4 vol%
CO	35 ppm _v	2000 ppm _v
H ₂ S	0.01 vol%	200 ppm _v
SO ₂	100 ppm _v	100 ppm _v
NOx	100 ppm _v	100 ppm _v

WP2Removing technical barriers to large-scale CO₂ transport.

(SINTEF, ICL, TNO, IFE, TAQA)

Whether it is ship or pipeline that will be the most optimal transport solution is highly dependent on several parameters and thus case specific; for example:

- CO₂ volumes
- Distance from source to sink
- Lifetime of the project
- Complexity of network
 - One source to one sink
 - Several sources to one sink
 - Several sources to several sinks

WP2Removing technical barriers to large-scale CO₂ transport.

(SINTEF, ICL, TNO, IFE, TAQA)

Investigating a safe operating window (wrt corrosion). The test conditions have been defined, experimental plan is under development.

Test conditions

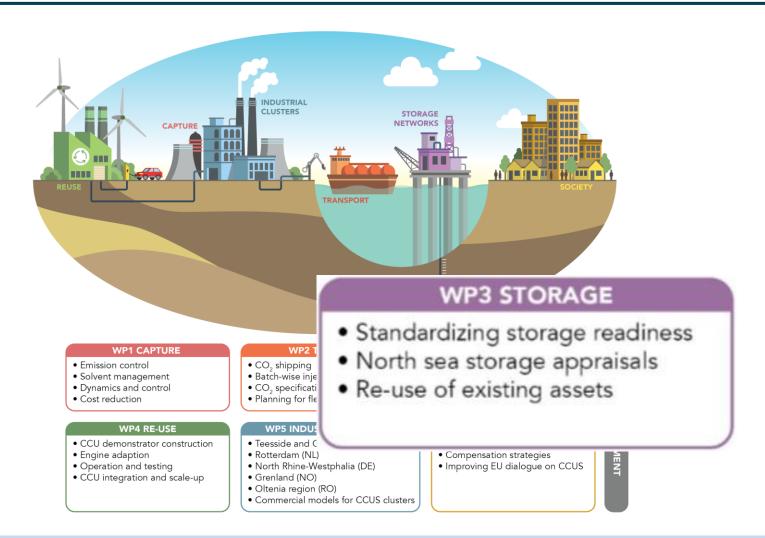
Pressure: 15-18 bars
Temperature: -25 to -28

CO₂ stream composition

Comp.	Dynamis	NETL* (for design)		Carbon net project	Goldeneye/ Peterhead	Norwegian Fullscale	Align I
ppmv	2008	2012	2013	2016	2014 (2016)	project	
H ₂ O	500	730	500	100	50	30	122
H ₂ S	200	100	100	100	0.5	100	130
co	2000	35	35	900-5000	10	400	0
O ₂	<40000	40000	10	20000-50000	1(5)	10	275
SOx	100	100	100	250-2500	10	100	96
NOx	100	100	100	200-2000	10	100	69
Other							

IFP.

WP2 Future Work

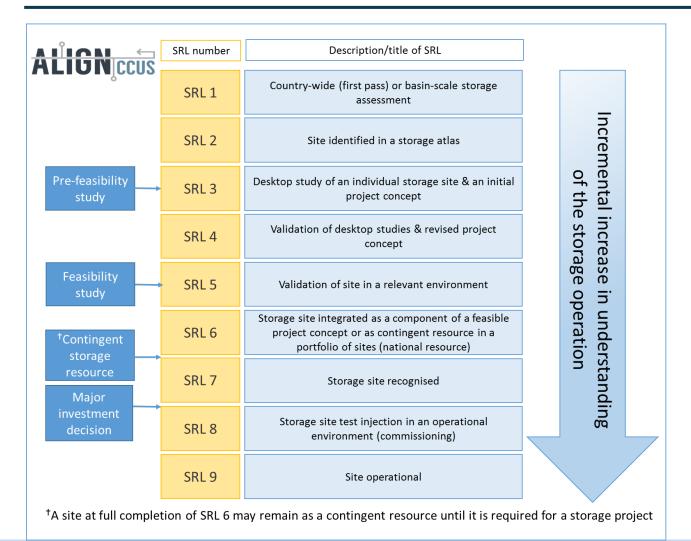

- Investigate safe and efficient injection conditions for batch-wise injection of CO2
 - Two injection cases have been identified: a UK case and a Norwegian case
 - Possible effects in the well of injecting cold CO2 have been identified
- The work on CO2 transport networks has just started

WP	Key expected results	Impacts
	Derive cost estimates and benchmarks for CO ₂ shipping	Improved understanding of the business
	and offshore unloading with reduced uncertainty	case for shipping and direct injection
Ę	Quantification of the impacts of batch-wise injection on	Allow operational guidelines to be
ransport	the integrity of the storage system	developed for batch-wise injection
an	CO ₂ specifications expected from pilot-scale post-	Allow the identification of an optimum
F	combustion capture systems are evaluated in dense-	balance between stream composition
WP2	phase CO ₂ corrosion lab	and transport infrastructure needs
>	A real-options multi-period CCS network optimisation	Improved cost-benefit analysis
	model including capture from power and industry,	capabilities for planning full-chain CCUS
	energy storage and conversion is developed	projects and CCUS clusters

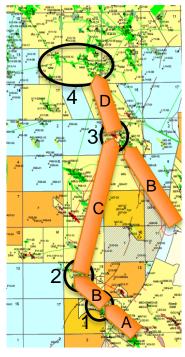
Work Packages (WP3)

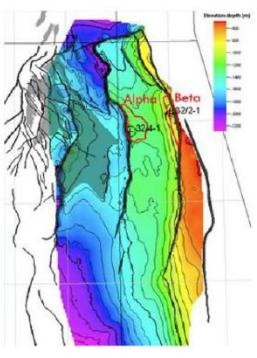
WP3 Large-scale storage networks

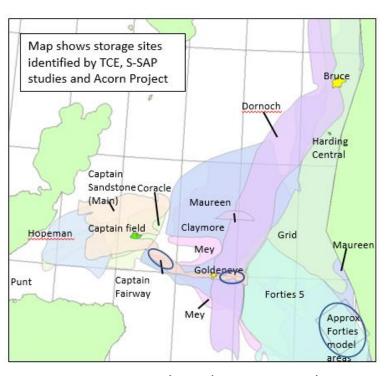
(BGS, TNO, SINTEF PR, TAQA, TVCA, Scottish Enterprise, RUG, SDL)


- Vast potential storage capacity beneath the North Sea (fields and formations)
- Prospective industry CCS operators require:
 - increased confidence in availability
 - sufficient capacity
 - realistic costs and timing of storage provision.

Increase operator certainty in future storage provision


WP3 Large-scale storage networks (BGS, TNO, SINTEF, TAQA, TVCA, Scottish Enterprise, RUG, SDL)




WP3 Large-scale storage networks (BGS, TNO, SINTEF PR, TAQA, TVCA, Scottish Enterprise, RUG, SDL)

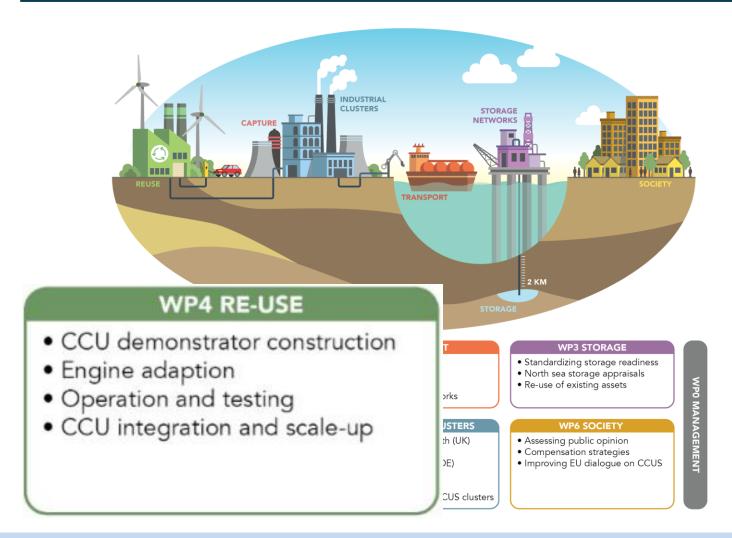
NL P18 - P15 and Q - Clusters

NO Smeaheia Area

UK Teesside and Grangemouth

Collaboration with ACORN, PreACT, ELEGANCY

WP3 Future work

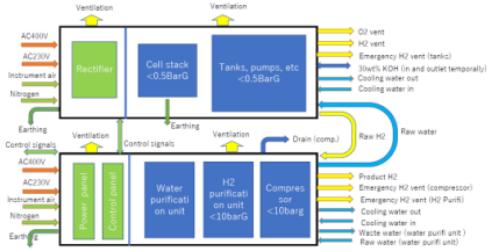

- The reuse of infrastructures for CO2 storage: first draft report submitted.
- Legal issues: A stakeholder workshop will be organized.

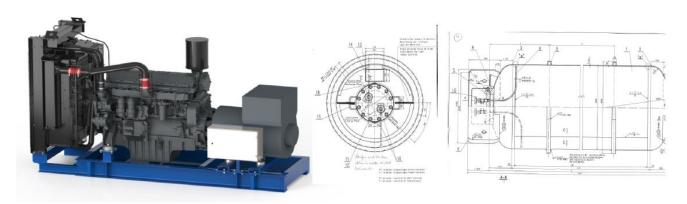
WP	Key expected results	Impacts
	Provide a classification framework for storage	Increased investor confidence in
	readiness levels benchmarked against existing storage	timeframe and resource needs for
ge	sites	follow-on storage development.
Storage	A portfolio of selected storage sites in the UK,	Enables FIDs on transport and storage
st	Netherlands and Norway to provide certainty on	infrastructure and supporting
WP3.	storage for ALIGN clusters	development plans for storage roll-out.
3	An asset register of existing North Sea oil and gas	Supports decommissioning policy and
	infrastructure and assessments of their suitability for	regulation for transport and injection
	re-use for CCUS projects	infrastructure.

Work Packages (WP4)

WP4 CCUS as an element for large-scale energy storage and conversion (RWE, MHPSE, AKEU, FEV, FZ Julich, TNO, RWTH, Deutz)

- WP4 aims at accelerating the integration of CCU applications into the energy system by:
 - Demonstrating the full CCU-chain and utilisation of CCU-products in the power and transport sectors
 - Obtaining acceptance for CCU by additional benefits: security of supply and low-emission fuels
 - Generating added value by CCUS and gain cost reduction potential by innovative technology
 - Assessing socio-economic value and benefits of CCUS



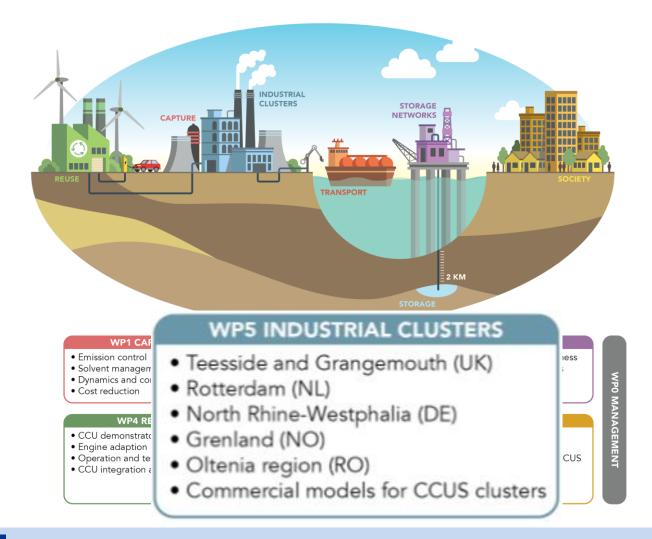


WP4 Demonstration setup

 Demonstrator design well underway.

 Engine adaption progresses as planned

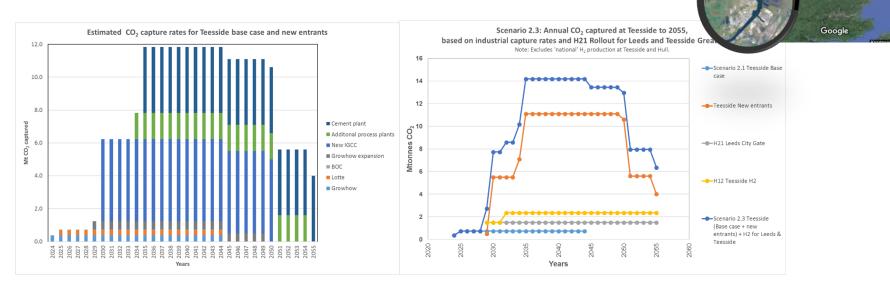
WP4 Future work


Strong focus on building the demonstrator, but work on the LCA has started, first data is received

WP	Key expected results	Impacts
	Demonstration of the full CCS/CCU chain	Proven feasibility and viability of a
		utilisation chain, increases public
		awareness and acceptance of CCS/CCU
		as a climate protection technology
	Understand the additional multi-sector benefits of	Quantifies the potential socio-economic
se	establishing a CCUS chain producing low-emission	effects of CCS/CCU beyond climate
e-u	transportation fuels	protection by intelligent coupling of the
ě.		sectors energy, industry and transport.
WP4. Re-use	Techno-economic optimisation of the CCU	Enhances the chance for accelerated
>	demonstrator technology	implementation of CCU due to better
		economic performance.
	Quantify the environmental performance of a full CCUS	Makes the advantages of CCUS
	chain using data derived from actual operation	transparent in comparison with other
		competing climate protection
		technologies.

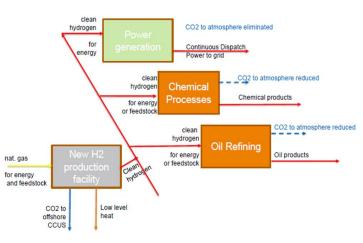
Work Packages (WP5)

Industrial cluster/ region	Development priority in ALIGN	Existing appraised storage		Extended storage capacity to be identified in ALIGN	
		Storage site	Capacity	Status	Target stores
Rotterdam (NL)	Develop plans for centralised CO ₂ removal from natural gas, and increased H ₂ use in power generation and industry	P18-4 Gas Field	8 Mt	Permit awarded	P18, P15 and Ijmuiden fields and sandstone formations
Teesside (UK)	Identify cost reduction opportunities through shared infrastructure / optimise transport and storage plans	Endurance structure	200 Mt	Permit ready	Depleted fields, closures in the Bunter and other sandstone formations
Grangemouth (UK)	Identify cost reduction opportunities through shared infrastructure / optimise transport and storage plans	Goldeneye Field	10-15 Mt	Permit ready	Depleted fields, closures in the Captain and other sandstone formations



Industrial cluster/ region	Development priority in ALIGN	Existing appraised storage		Extended storage capacity to be identified in ALIGN	
		Storage site	Capacity	Status	Target stores
North Rhine- Westphalia (GER)	Evaluate CCU as a multi-sector CO ₂ mitigation option in the region	n/a	n/a	n/a	n/a
Grenland (NOR)	Advance engineering plans for an intermediate CO ₂ surface storage facility capable of handling CO ₂ from multiple sources	Smeaheia area	100 Mt	Feasibility study	Closures in the Sognefjord Sandstone and in deeper formations.
Oltenia Region (ROM)	Evaluate multi-modal CO ₂ transportation routes and use in enhanced oil recovery with permanent storage	Deep saline aquifers within a 50km radius of Turceni	1.5 Mt/yr	Feasibility study	Potential storage sites in the Moesian Platform

- 3 interconnecting sites covering chemicals, H₂ production, steel, gas processing, energy from waste, biomass power, and biofuels
- ~6 MtCO₂/yr, 6% UK industrial emissions
- €12 billion/yr / 25,000 jobs.

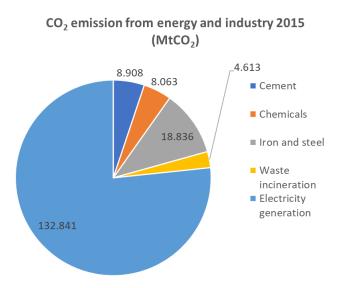


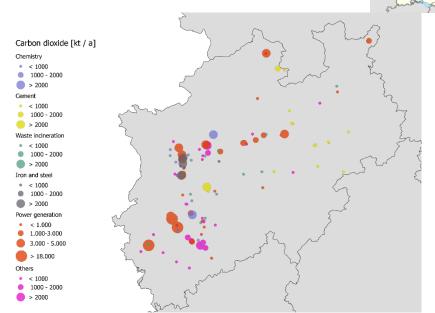


WP5 Targeted CCUS activities in industrial clusters (TNO,

BGS, TCVA, SDL, ICL, Scottish Enterprise, Bellona, FZ Julich, SINTEF, Yara, Norcem, GeoEcomar, PicOil, CO2Club)

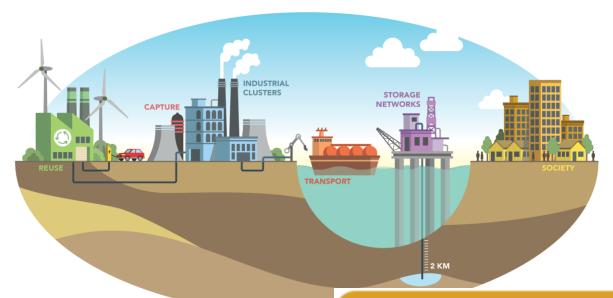
- 5 large refineries, H₂ production, (petro)chemicals (56 locations), waste-to-energy, coal and gas power generation
- ~ 30 MtCO₂ emitted per year
- 93,000 people directly/indirectly employed





- Heavily industrialised state, one-third of total German CO₂ emissions (~300 Mt/yr)
- No CO₂ storage permitted in many states
- CCU for low-carbon transport fuels
- LCA on climate impact of CCU ongoing

WP5 Future Work


- Include the other industrial areas.
- Take this results and the results from the other work packages and other (ACT) project to develop the actionable blueprints for decarbonisation.

WP	Key expected results	Impacts
ustrial	Provide a set of actionable development plans for targeted CCUS activities in 6 key industrial clusters across the EU	governments in decision-making for
WP5. Indu	across the EU Develop commercial models for embryonic CO ₂ cluster infrastructure using results from pilot-testing and optimisation modelling completed in ALIGN	Greater clarity on the expected investment requirements and benefits for public and private actors

Work Packages (WP6)

WP1 CAPTURE

- Emission control
- Solvent management
- Dynamics and control
- Cost reduction

WP4 RE-USE

- CCU demonstrator construction
- Engine adaption
- Operation and testing
- CCU integration and scale-up

WP2 TRANSP

- CO₂ shipping
- Batch-wise injection
- CO₂ specifications
- Planning for flexible ne

WP5 INDUSTRIAL (

- Teesside and Grangem
- Rotterdam (NL)
- North Rhine-Westphalia
- Grenland (NO)
- Oltenia region (RO)
- Commercial models for

WP6 SOCIETY

- Assessing public opinion
- Compensation strategies
- Improving EU dialogue on CCUS

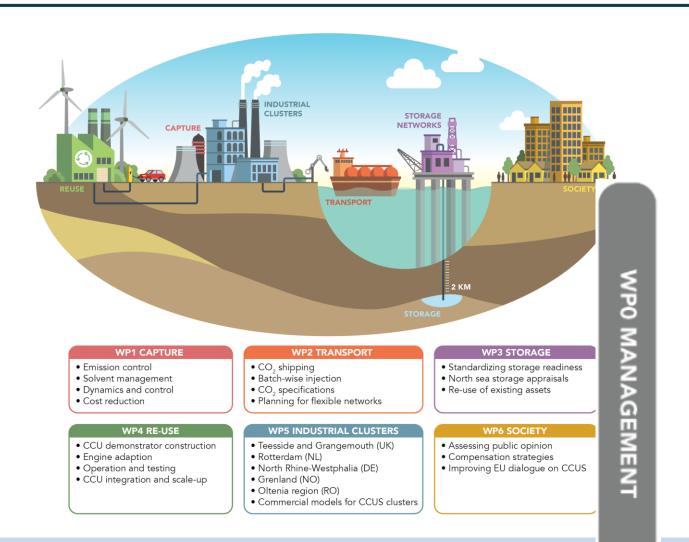
WP6 Implementing CCUS in Society (LU, UEDIN, ECN, FZ Julich, Bellona, NUPSPA)

- Coordination with other (ACT/H2020) research programs (ELEGANCY, ACORN, ECOBASE, ENOS)
- Seek cooperation on national level: PORTHOS (Port of Rotterdam CO2 Transport Hub & Offshore Storage)
- Informed representative polling in UK & NL: General public (proximity to industrial areas; place attachment, industry attitudes), Questionnaire & information in preparation

WP6 Implementing CCUS in Society (LU, UEDIN, ECN, FZ Julich, Bellona, NUPSPA)

- Compensation schemes in different countries
 - desk-based review on compensation practices for subsurface activities, energy and infrastructure developments in EU and non-EU countries (review of scientific literature, projects, practices and policies): finalized, journal article in preparation.
- Identification of best practices and knowledge gaps (consultation/participation, compensation)
 - ~30 semi structured interviews with (non)CCUS stakeholders in NL, UK and RO. Interview protocol finalized: interviews October-December 2018, preliminary results expected in spring 2019
- Testing the effectiveness of compensation schemes
 - quantitative studies in NL, UK and RO to close knowledge gaps: study with students data collection finalized in April 2018; new (pilot) studies scheduled for spring 2019.

WP6 Future Work


- Stakeholder perceptions in different European countries
- Creating and testing new core messages

WP	Key expected results	Impacts
WP6. Society	Understanding of public and stakeholder perception concerning CCUS projects in industrial applications, including CO ₂ utilisation	_
	Evidence-based insight in best practices regarding the use of compensation schemes for CCUS projects	The identified success factors and pitfalls support project developers and national governments in designing effective compensation strategies
	Development and testing of new communication materials for CCUS	Provides strategic elements for a dialogue with society about the need and necessity of CCUS

Work Packages (WPO)

WPO Management (TNO, SINTEF, BGS, LU, NUPSPA, UEDIN-SCCS)

- Project management
 - No major deviations. Some (short) delays in reporting and shifts of milestones. All logically explainable without impact on overall progress.

WPO Dissemination

(TNO, UEDIN-SCCS)

Twitter:

182 Followers

July 2.141 Impressions

August: 15.300 Impressions

September: 2.922 Impressions

October: 10.500 Impressions

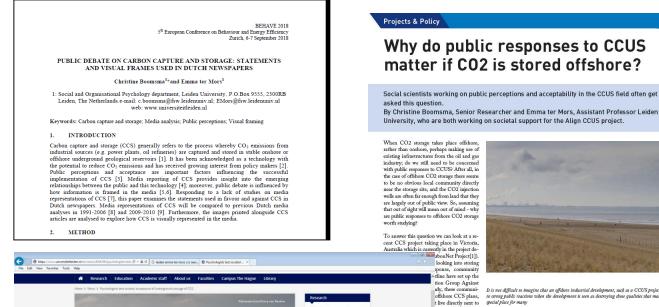
YouTube channel: 67 watches

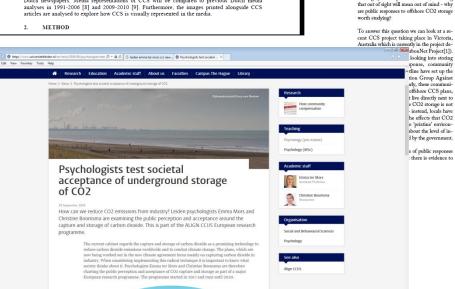
Webinars

ALIGN-CCUS: Accelerating low-carbon industrial growth through CCUS

40 external participants

CCUS as an element for large-scale energy storage and conversion


29 external participants



WPO Dissemination

(TNO, UEDIN-SCCS)

It is not difficult to imagine that an offshore industrial development, such as a CCUS project, can lead to strong public reactions when the development is seen as destroying those qualities that make the sea a special place for many

Photo: https://beeldbank.rws.nl, Rijkswaterstaat / Harry van Reeken.png

I by the government. There is no evidence for an universal prefer- among ence for offshore developments over onshore regions developments[4]

Great green bribe or good practice? ensation in the context of Carbon Capture and Storage

Christine Boomsma & Emma ter Mors Leiden University, The Netherlands

Carbon Capture and Storage (CCS) has been part of the EU energy and climate change policy for over a decade, and recently the technology has gained renewed attention. In the Netherlands, the new coalition government announced a large role for CCS as part of its efforts to cut carbon emissions. Similarly, the UK government recently committed to further developing CCS within its energy strategy. It is hoped the technology may offer an opportunity to reduce carbon emissions in the short term in industry sectors where other (renewable) alternatives are currently lacking.

However, CCS is a contentious technology and recent projects have been cancelled, in part, due to local opposition and lack of community and policy support. One of the difficulties is that the perceived benefits associated with a CCS facility for the local community tend to be low in relation to Its perceived costs and risks. As is the case for other energy infrastructures, community compensation (or community benefits) has been suggested as a way to restore a perceived imbalance of mostly local burdens and national, global benefits. Rationales for offering compens include fostering social acceptance, compensating for costs and impacts, and engaging in good neighbourliness. In line with these various functions compensation can also take various forms, setting up a community fund, to investments in the local economy, and payments to individual

Over the past years a diverse literature has looked into the role of community compensation across over the past years a diverse interactive has toxice into the role of community compensation across various land uses and research fields. There is limited synthesis between these fields, while at the same time, in practice, the provision of community benefits has started to move from an ad hot to a more institutionalized approach.

Therefore, it is now important to take stock of the literature. We present a review of the co

WPO Management and Dissemination

(TNO, UEDIN-SCCS)

Oral presentation

Session 7E - Electro- and Thermochemical Conversions Oct 24, 2018 9:10 AM - 10:50 AM Eureka 2

14th International Conference on Greenhouse Gas Control Technologies, GHGT-14 21st - 25th October 2018, Melbourne, Australia

Demonstrating the CCU-chain and sector coupling as part of ALIGN-CCUS – Dimethyl ether from CO₂ as chemical energy storage, fuel and feedstock for industries

Peter Moser^{1 **}, Georg Wiechers⁴, Sandra Schmidt⁴, Knut Stahl⁴, Muhammad Majid⁵, Sven Bosser⁵, Arthur Heberhe⁵, Hiroshi Kakhluri⁵, Mutsushiro Maruyamat⁵, Ralf Peters⁴, Stefan Weiske⁶, Petra Zapp⁶, Stefanie Troy⁶, Bastian Lehrheoer⁶, Murcel Neumann Sharareh Schmid⁵, Jaap Vente⁶, Jean-Pierre Pieterse⁶, Jurnaun Boon⁶, Earl Goetheer⁶

"Will Board AC Majamatian 2 4722 Euro, Germany
"Mattalah Minasi Powe Quant Europe Gehik Majamanja Bir 4702 Eurobay
Anni Eurob Hange Gehik An Sandarah Bir 4702 Eurobay
"Man Eurob Hange Gehik An Sandarah 4705" Eurobay Germany
"Yoroboquamerin Mindo Gehik Eurob and Eurobay
Tella Minasi Manisi Disensing, Frenchesberghe 4, 2712 Minasi Minasi
Tella Minasi Disensing, Frenchesberghe 4, 2712 Mario, Germany
"TEL Bergue Gehik Manisiphine (El. 1997 Landar, Germany
"TEL Bergue Gehik Manisiphine (El. 1997 Landar, Germany
"TEL Bergue Gehik Manisiphine (El. 1997 Landar, Germany
"TEL Europe Gehik Manisiphine (El. 1997 Landar, Germany
"TEL Bergue Gehik Manisiphine (El. 1997 Landar, Gehik Manisiphine)
"Tella Mani

Abstract

In the ADIGE-CCOS protect a full CCU chain well be described in an element for loop-coals energy strops togethat with CO₂ contravation and CCCE-decay to stage as a parametage his pair for notice coaling. The descriptions comparises reasonable of the contravation of the contravation comparises reasonable of the contravation of the contravation

Devoré: CCU, sere coping dustryl she, DME expedyles dustryl she , OME, chesical every strops

* Dr. Peter Minner. Tell. 148-200-13-20040; flor: 149-201-13-21406

Oral presentation

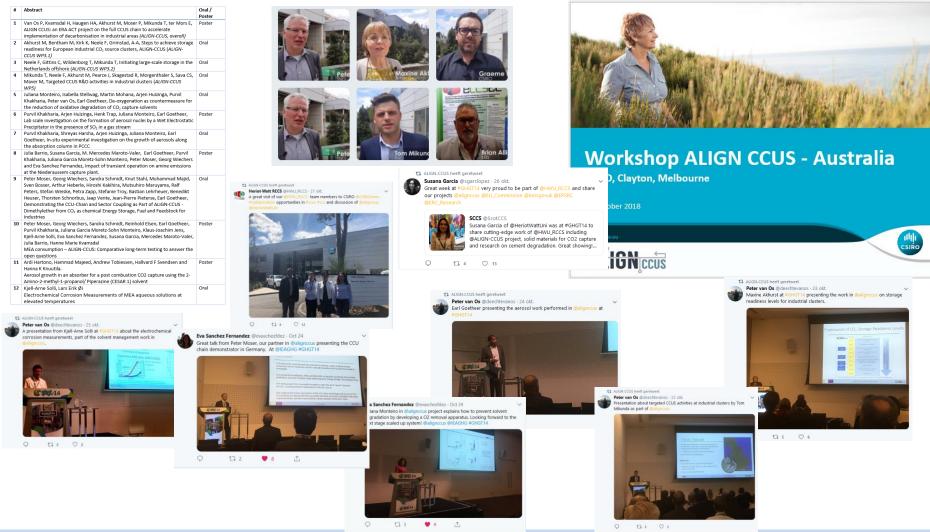
AUGN-CCUS: Dieselersatztreibstuff DWE aus abgetrennten CO₂ des Kraftwerks Niederaußen

ALIGN-CCUS: Dieselersatztreibstoff DME aus abgetrenntem CO, des Kraftwerks Niederaußem

Peter Moser, Georg Weichers, Sandra Schmidt, Knut Stahl, Muhammad Majid, Arthur Heberle, Hiroshi Kakhirra, Shinji Hasegawa, Mitsuhiro Maruyana, Rild Peters, Siefan Weissig-Petra Zapp, Stefanie Tinz, Merzel Neumann, Bestian Lehheuse, Sharaeh Schaub und Thorstee Schools

	Einleitung	1
	Entwicklung der CCU-Demonstrationsanlage	4
1,	Versorgung und Betrieb der Demonstrationsanlage	4
2.	Demonstration der DME-Produktion	4
2.1.	Alkali-Elektrolyseur	5
2.2.	CO ₂ -Konditionierungseinheit	6
2.3.	Einstufige DME-Syntheseeinheit	6
3.	Adaption von Discelmotoren für DME und OME	7
3.1.	Stationärer DME-Stromerzeuger	7
3.2	OME _{8.5} für PKW-Applikationen	9
	Prozessanalyse der CCU-Kette	9
5.	Life Cycle Assessment und Spitzenstromerzeugung aus DME	
	Zusammenfaroung	11
	Quellen	12

1. Einleitung


Das europäisch und national geförderte ALIGN-CCUS-Projekt vereint 31 Forschungstneitute und Industrieunternehmen aus Tünf Ländern mit dem gemeinsamen Ziel, den schneillen und kosteneffektiven Einsatz von CO₂-Abscheidung.—Nutzung und -Speicherung zu unterstützen.

WPO Dissemination

(TNO, UEDIN-SCCS)

WPO Dissemination

(TNO, UEDIN-SCCS)

26 JUN VIDEO: Capturing a low-carbon future – behind the scenes at PACT

14 MAY BLOG: Pooling European learning and expertise to protect our atmosphere

By Dr Maxine Akhurst

Maxine Akhurst is a research geoscientist at British Geological Survey (BGS) in Edinburgh and leader of CO2 storage research in the ALIGN-CCUS project. The recently hosted the second technical meeting for the project at the BGS offices in Edinburgh. **29** AUG

Expert interview: Could legal issues prevent North sea oil & gas infrastructure being reused for CO2 storage?

Interview with Joris Gazendam LL.M (left) of Groningen Centre of Energy Law, University of Groningen, Main photo: Kjetil Alsvik/Equinor

By Tom Mikunda, TNO

15 AUG

BLOG: Why do public responses to CCUS matter if CO2 is stored offshore?

By Christine Boomsma, Senior Researcher, WP 6 (Task 6.2 Lead) and Emma ter Mors, Assistant Professor, WP6 Lead, both Leiden University

28 MAR ALIGN innovation: can methanol-based synthetic fuels drive an energy revolution?

Interview with Prof. Dr. Ralf Peters (left), Head Fuel Processing and Systems, Forschungszentrum Jülich.

By Tom Mikunda, TNO

COMMENTS

Guestblogger: Maxine Akhurst, British Geological Survey, lead of UK case study, ELEGANCY

ALIGN CCUS Outreach

www.alignccus.eu

@alignccus

alignCCUS

ALIGN-CCUS

Acknowledgements

ACT ALIGN CCUS Project No 271501

This project has received funding from RVO (NL), FZJ/PtJ (DE), Gassnova (NO), UEFISCDI (RO), BEIS (UK) and is cofunded by the European Commission under the Horizon 2020 programme ACT, Grant Agreement No 691712

www.alignccus.eu

